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Abstract
Fishery-independent trawl surveys are commonly used to monitor the status and trends of marine finfish species.

Although bottom trawls are powerful sampling tools, they are limited to surveying relatively featureless bottom habi-
tats and, as a result, may not accurately represent the trends in the relative abundance of fish species associated with
structured and complex habitats. We evaluated the feasibility of rod and reel as an alternative fishery-independent sur-
vey methodology to monitor the abundance of Tautog Tautoga onitis, a recreationally and commercially important
structure-dwelling reef fish, in the coastal waters of Massachusetts. Results suggest that a rod-and-reel survey is an
effective, low-cost approach to monitor the structured habitats inaccessible to trawl gears. Using a generalized linear
mixed modeling framework we were able to identify important predictor variables influencing catch rates; variables
that would be important in the design of a continued long-term monitoring program and in the standardization of
these data as an index of relative abundance. Variables retained in the top model included year, month, depth strata,
bottom water temperature, tidal phase, fishing vessel, angler avidity, and random effects that accounted for the
repeated measures survey design. Power analyses revealed that the directed rod-and-reel survey had far greater power
to detect changes in Tautog abundance than the extant trawl survey, which had very little power to detect even large
shifts in abundance. The results of this pilot study suggest that the continued use of rod and reel as a complementary
survey tool would be warranted to further compare the trends in Tautog abundance generated using the two different
survey methodologies, to reduce uncertainty in the stock assessment, and to improve the information upon which Tau-
tog management is predicated in Massachusetts waters.

Fishery-independent surveys are commonly used to pro-
vide unbiased indices of relative abundance for use in
stock assessment models, which in turn provide estimates

of population status and trends. Designing a survey that
can track changes in abundance and age structure, while
controlling for extraneous factors that can influence catch
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rates, is paramount (Maunder and Punt 2004). Standard-
ized indices of abundance generated from survey data are
assumed to be representative of the underlying population;
however, when that assumption is violated, biases in pop-
ulation status can emerge, potentially leading to manage-
ment measures that are misaligned with management
objectives (Maunder and Punt 2004). In the northwest
Atlantic Ocean, bottom-trawl surveys are the primary sur-
vey tool used to monitor marine finfish species, largely
due to their efficiency and ability to provide standardized
indices of relative abundance for a wide range of species.
However, most bottom trawls are limited to sampling a
featureless bottom thereby creating a potential bias when
used as an index of abundance for fish species that inhabit
the rocky, complex structures inaccessible to bottom-tend-
ing mobile gear (Hilborn and Walters 1992; Gregory et al.
1997; Rose and Kulka 1999; Cordue 2007).

In southern Massachusetts, Tautog Tautoga onitis, a
native species of the wrasse (Labridae) family, supports
important commercial and recreational fisheries from late
spring through the fall, before their winter migration
towards warmer offshore habitats (Cooper 1966). Tautog
is a relatively slow-growing, long-lived (25–30 years), and
sedentary temperate reef fish that prefers complex, struc-
tured habitats (Cooper 1967). During the adult stage, Tau-
togs are found in and around hard substrates required to
support the crustacean communities that comprise much
of the Tautog diet (Bigelow and Schroeder 1953). The
shelter likely protects them from predators as they are
fairly inactive at night and exhibit a torpor-like state
throughout much of the winter (Olla et al. 1974, 1975,
1979; Curran 1992).

A synoptic trawl survey carried out by the Massachusetts
Division of Marine Fisheries (MDMF) has provided an
index of abundance for Tautog since 1978. Abundance
from this time series peaked in the 1980s, after which it
dramatically declined and has remained low through the
present day. In the benchmark stock assessment completed
in 2015 (ASMFC 2015), it was estimated that spawning
stock biomass (SSB) had declined approximately 70%
from the early 1980s leading to an overfished status for
most of the previous decade. In the 2016 assessment
update, the Tautog stock was assessed with respect to four
management units: Massachusetts–Rhode Island; Long
Island Sound; New Jersey New York Bight; and Dela-
ware, Maryland, and Virginia. The results from this
assessment indicated that although the Massachusetts–
Rhode Island (MARI) stock component has not yet
rebuilt to the target biomass level, the stock region is no
longer overfished based on spawning potential ratio (SPR)
biological reference points (ASMFC 2016). One of the
potential biases highlighted in the Atlantic States Marine
Fisheries Commission assessment (ASMFC 2015) is that
none of the trawl-based, fishery-independent surveys were

designed to target Tautog, nor are they suitable for sam-
pling the preferred complex habitats. Additionally, the
fishery-dependent Marine Recreational Information Pro-
gram (MRIP), which provides data on the recreational
fishery, rarely encounters Tautog, resulting in a paucity of
fishery-dependent data.

The question of whether we are accurately characteriz-
ing the current population status and recent trends in abun-
dance has been raised due to uncertainties in the
assessment and survey time series. The recreational harvest
trends reported by MRIP corroborate the trawl-survey
trends, but fishery-dependent trends are often conflated
with management measures. For example, a decline in
recreational harvest could simply be reflective of increas-
ingly restrictive regulations. One hypothesis that has been
put forth regarding the Tautog population is that during
the years of high trawl-survey catches, the optimal habitat
(e.g., rocky ledges and outcroppings) was saturated, leading
to a “spillover” effect into suboptimal habitats (e.g., fea-
tureless bottom accessible to trawl survey gear). The popu-
lation at this time had been subjected to decades of
commercial fishing; however, recorded commercial land-
ings did not peak until the mid-1980s (ASMFC 2015). If
this hypothesis was supported, it suggests that the CPUE
from the trawl survey has been exhibiting hyperdepletion
(Hilborn and Walters 1992), a phenomenon in which the
survey index has declined more rapidly than the true under-
lying population. For example, this could occur if fish den-
sity in the preferred, complex habitat is substantially higher
than in the open, featureless bottom, yet remains below the
saturation point. Alternatively, density within both the
complex and featureless habitats may be low, and the trawl
survey may be adequately representing the true population
trends. Without a fishery-independent survey method
designed to sample Tautog in their preferred habitats, eval-
uating which of these two explanations is more plausible
remains elusive. To address this important knowledge gap,
MDMF developed a rod-and-reel pilot study to evaluate
the efficacy of this sampling methodology as a potential
tool for long-term monitoring of Tautog abundance.

The objective of this study was to evaluate the feasibil-
ity of a standardized rod-and-reel survey targeting Tautog
in complex habitats and compare our results with data
collected from the extant fishery-independent trawl survey.
In addition, we used power analysis to evaluate the proba-
bility of detecting meaningful changes in the targeted pop-
ulation under different sampling scenarios and compared
with the MDMF trawl survey.

METHODS
Study site and survey design.— The survey extent for

this study was Region 1 of the MDMF bottom-trawl sur-
vey, which encompasses Buzzards Bay and Vineyard

USE OF ROD AND REEL TO MONITOR TAUTOG 551



Sound, Massachusetts (King et al. 2010; Figure 1). The
U.S. Geological Survey sediment and bathymetry data
layers (Massachusetts Office of Coastal Zone Management
2015) were merged and overlaid with a 1′ latitude–longi-
tude grid using the ETGeoWizards extension (Tchoukan-
ski 2012) for ArcGIS (ESRI 2012). From this grid, the
habitat in each cell was characterized as either “complex”
for cells that were composed of at least 50% rock and
ledge or “featureless” for cells with less than 50% rock
and ledge. Of the 407 grid cells within the study area, 96
were identified as having complex habitat. Each cell in the
grid was also assigned to a depth stratum: shallow (0–
9 m), intermediate (10–18 m), or deep (19–27 m). Each
month, a depth-stratified random sampling design was
used to select 48 sampling locations to ensure adequate
spatial coverage. The inshore trawl survey, to which we
compared and contrasted the rod-and-reel survey, also
uses a depth-stratified random sampling design, in which
sampling occurs in the spring (May) and fall (September)
of each year.

The pilot study was conducted from October 2016
through November 2017, with seasonal sampling through-
out the fall (September–December) and spring (April–
May; Table 1). We attempted to fish twice per week dur-
ing those sampling months, typically completing five to six
sampling stations per day. Sampling was spread out over
a given month due to logistical and weather constraints;

however, the timing of the survey was designed to target
months during which Tautog are seasonally available.
Research angling was conducted from either an MDMF
vessel or a chartered fishing vessel. At each sampling sta-
tion, both vessels identified hard bottom substrate and
dense complex terrain using side-scan sonar. By targeting
illuminated sonar returns and their resulting shadows,
hard structure deemed suitable Tautog habitat was located
and anchored on for sampling. Once anchored, latitude,

FIGURE 1. Extent of the survey for the rod-and-reel study (textured region), which corresponds to Region 1 of the MDMF trawl survey. The white
areas inside the textured region are omitted from the extent of the trawl survey due to shallow, rocky bottom. The inset in the upper left corner shows
the broader geographic region for context (MA = Massachusetts, RI = Rhode Island, CT = Connecticut).

TABLE 1. Summary of sampling effort in terms of number of trips and
locations sampled, and the number of Tautog encountered, by month,
throughout the rod-and-reel pilot study, 2016–2017.

Month
Number
of trips

Number of
stations

Number
of Tautogs

2016
October 6 26 496
November 6 28 437
December 2 8 2

2017
April 6 28 7
May 9 46 198
September 6 32 344
October 7 36 351
November 7 37 255
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longitude, depth, and wave height were recorded. Addi-
tional data corresponding to each sampling event were
collected from deployed and in situ data loggers to include
bottom water temperature, salinity, dissolved oxygen, tidal
phase, and tidal amplitude. The standardized fishing gear
was comprised of a 3/0 Daiichi Octopus hook on a drop-
per loop, baited with half of a green crab Carcinus maenas
(the most common bait used by commercial Tautog fish-
ers), and an 85–142 g weight.

At each station, fishing was initiated once hooks were
dropped to the bottom and continued for 45 min and mon-
itored using a digital stopwatch. All anglers fished continu-
ously for 45 min assuming at least one angler caught a
Tautog within the first 30 min; otherwise, sampling con-
cluded after 30 min of fishing effort. All fish caught were
retained in a live well until angling was complete, at which
point they were identified to species, enumerated, and mea-
sured for length (cm). Additional biological sampling of
Tautog was performed using a random length-stratified
sampling design, sacrificing one fish for each 5-cm length
bin per station to obtain weight (kg), sex, maturity, oto-
liths, and a pelvic fin spine for aging (Elzey and Trull
2016). One pelvic fin spine was removed from all Tautog
that were released alive for age analysis.

Statistical analyses.—We applied a series of generalized
linear mixed models (GLMMs) to identify important vari-
ables influencing catch per angler (CPA). Generalized lin-
ear models (GLMs) are commonly used to standardize
fishery-dependent data for use as an index of abundance,
but can also be used to standardize fishery-independent
surveys if variables influencing catch rates, other than
changes in abundance, cannot be explicitly controlled for
through the survey design (Maunder and Punt 2004). Dis-
crete count data (e.g., angler catch) are common in fish-
eries studies and are often modeled assuming a Poisson or
negative binomial error structure (White and Bennetts
1996; Ver Hoef and Boveng 2007); however, ecological
phenomena can produce a greater number of zeros than is
expected under either of the aforementioned distributions.
To address zero-inflation arising from both structural and
sampling zeros and to avoid potential bias in the parame-
ter estimation, we modeled CPA using zero-inflated nega-
tive binomial (ZINB) mixed models (Zuur et al. 2009;
Harrison 2014; Brooks et al. 2017). Mixed models were
used, as opposed to the general ZINB, because the survey
design led to repeated measures on the same individual,
sampling location, and fishing day. Observations can be
correlated in space and time, thus violating the assump-
tion of independence among observations (VanLeeuwen
et al. 1996). Using random effects in a mixed-modeling
framework can effectively account for this correlation
while quantifying the amount of variability among the fac-
tors that were repeatedly measured (Bolker et al. 2009;
Irwin et al. 2013).

We estimated fixed effects associated with year (i), month
(j), vessel (k), depth strata (l), fishing depth (m), bottom tem-
perature (n), tidal phase (o) and amplitude (p), and angler
avidity (q) and random effects to account for angler (r), spa-
tial (s), and ephemeral temporal (t) variability (i.e., fishing
day). Consideration was given to the inclusion of nontarget
species catch as a covariate in the models to account for
gear saturation and potential competition; however, doing
so may be inappropriate as species that exhibit similar pat-
terns of recruitment or mortality may obscure some of the
interannual variability in the target species (Maunder and
Punt 2004; Harms et al. 2010), the signal that would be one
of the primary objectives of this monitoring program. All
continuous covariates were standardized before model fit-
ting to improve convergence; the R package glmmTMB
(Magnusson et al. 2016) was used to implement the ZINB
mixed models.

The general probability function for the zero-inflated
negative binomial mixed models (Zuur et al. 2009) is as
follows:

f ðyi�t ¼ 0Þ ¼ πi�t þ ð1� πi�tÞ· κ
μi�t þ κ

� �κ

and

f ðyi�tjyi�t>0Þ ¼ ð1� πi�tÞ·fNBðyÞ;

where yi–t is observed CPA, pi–t is the estimated parameter
from the logistic regression, and

fNBðyÞ ¼ f ðyi�t; κ; μi�tjyi�t≥0Þ
¼ Γðyi�t þ κÞ

ΓðκÞΓðyi�t þ 1Þ ·
κ

μi�t þ κ

� �κ

· 1� κ
μi�t þ κ

� �yi�t

:

Distribution parameters from each model component
can be modeled using canonical link functions (McCullagh
and Nelder 1989). The logistic regression component was
modeled using the logit-link function as an intercept only
model as well as with water temperature (T) as a covariate
(equation 1),

logiteðπi�tÞ ¼ υþ δT ; (1)

while the negative binomial model included combinations
of covariates identified a priori as potential factors influ-
encing Tautog catch rates (Table 2),

logeðμi�tÞ ¼ αþ ΘXi�q þ γWr�t:

In the negative binomial component, μi–t is the mean of
the distribution (for levels i through t of the predictor vari-
ables) and κ is the estimated dispersion parameter. We
used a log-link function such that the linear predictor is a
function of random variables treated as fixed X and
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random effects W. Regression coefficients for the fixed Θ
and random effects γ were estimated by the model. The
random intercept from the negative binomial component
of the model (α) represents the reference level for each of
the categorical explanatory variables included in the mod-
els, and as a result, interpreting the intercept directly is
impractical. The coefficients associated with a specific
level of a categorical variable represent the mean CPA
relative to the reference level (Arab et al. 2008). All ran-
dom effects were assumed to come from a Gaussian dis-
tribution with a mean of zero and an estimated variance
parameter (r2).

Model selection was performed to identify the most
parsimonious model out of our candidate set (eight models
in total; see Table 3) to explain variability in Tautog
CPA. The candidate set of models represented combina-
tions of variables believed to have an effect on Tautog
abundance and catchability. An information theoretic
approach, using Akaike information criterion (AIC;
Akaike 1973), was used to compare models by evaluating
the inclusion of fixed effects using a maximum-likelihood
estimation framework, while keeping the random effects
constant as they represented complexity in the survey
design. When comparing models, models within two

ΔAIC units of the top model were assumed equivalent
(Burnham and Anderson 2002:49–97).

To assess the statistical power from our survey design
to detect changes in Tautog abundance, we performed a
series of power analyses using the stratified mean CPA.
Using the extensive spatial and temporal sampling carried
out during this 18-month pilot study, we were able to
evaluate the power to detect changes under the pilot study
design and explore whether sampling effort could be
reduced (e.g., sampling only in the spring or fall) without
diminishing our ability to detect meaningful changes. In
addition, we compared the power from the rod-and-reel
survey to that of the MDMF trawl survey using trawl
data (stratified mean number per tow and associated SEs)
from the same years and study region as the pilot rod-
and-reel survey. Power analyses were performed using the
“powertrend” function from the fishmethods R package
(Nelson 2014).

RESULTS
From 2016 through 2017, 2,090 individual Tautog were

caught at 241 sampling locations over the course of 49 d by
41 anglers (Table 1). Tautog ranged in size from 16 to

TABLE 2. Description of continuous and categorical covariates evaluated in the model selection process.

Variable Description

Fixed effects
Year Categorical: temporal variable related to interannual changes in abundance
Month Categorical: temporal variable to control for intraannual variability in catch rates associated with

migration and spawning
Vessel Categorical: variable to control for potential vessel effects on catch rates (charter vessel and

MDMF vessel)
Temperature Continuous: bottom water temperature (°C) obtained at every sampling location using an Onset

Hobo data logger
Depth stratum Categorical: stratum associated with average depth within the 1′ latitude–longitude grid cell for

each sampling location (shallow: 0–9 m, intermediate: 10–20 m, deep: 21–30 m)
Fishing depth Continuous: the depth (m) of the actual fishing location
Tidal phase Categorical: M2 gravitational tidal phase broken down into 3-h increments to represent high tide,

high transitioning to low tide, low tide, and low to high tide
Tidal amplitude Continuous: a deviation from the mean tidal amplitude (m)
Angler avidity Ordinal: a qualitative self-assigned rating between 1 and 10 indicating an angler’s level of fishing

expertise relative to Tautog; 1 = no experience, 5 = moderate skill level, and 10 = expert
Random effects

Trip Categorical: variable to quantify ephemeral temporal variability associated with the fishing day; 5–6
stations were typically sampled on a given fishing day

Station Categorical: spatial variable to control for potential autocorrelation in catch rates due to the
sampling location; multiple anglers fish at the same station on a given day and stations could be
repeatedly sampled throughout the survey

Angler Categorical: individual angler identifier was used to quantify the effect of angler skill that could
influence catch rates; individual anglers participated to varying degrees at multiple sampling
locations throughout the survey
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63 cm, with the vast majority of fish under the legal size-
limit of 40.6 cm (Figure 2). Tautog were caught on 537 of
978 angler fishing events for an overall angler success rate
of approximately 55%, and of the 241 locations sampled,
169 produced Tautog for a percent occurrence of approxi-
mately 70%. The survey was stratified by depth and month;
therefore, each sampling location had the potential to be
sampled multiple times. Of the 96 potential sampling loca-
tions identified, 94 were sampled at least once throughout
the survey and on rare occasions individual locations were
sampled up to six times. Tautog was by far the most com-
monly encountered species (83%); however, bycatch
included Black Sea Bass Centropristis striata (13%), Striped
Sea Robin Prionotus evolans (2%), Scup Stenotomus chry-
sops (2%), and a few rare species, each making up less than
1% of the catch totals: Smooth Dogfish Mustelus canis,
Cunner Tautogolabrus adspersus, Gray Triggerfish Balistes
capriscus, and Oyster Toadfish Opsanus tau.

Model selection suggested that three models were indis-
tinguishable using an information-theoretic approach,
meaning that two models were within two ΔAIC units
from the top model (Table 3). We chose to present the
results from the top model (Table 4), acknowledging,
however, that for different research objectives, model aver-
aging may be appropriate. The top model, from our can-
didate set, included bottom water temperature T as a
covariate in the logistic regression,

logiteðπnÞ ¼ υþ δTn;

where p is the probability of a zero catch, υ is the random
intercept, and δ the regression coefficient associated with
water temperature. The negative binomial regression was
estimated as

logeðμijklnpqrstÞ ¼ αþ βXijklnpq þ γWrst;

where μijklnpqrst is the linear predictor modeled on the log
scale, α is a random intercept representing the reference
level for all categorical variables (i.e., year, month, vessel,
depth stratum, and tidal phase) with fixed effects for year
(i), month (j), vessel (k), depth stratum (l), bottom water
temperature (n), tidal phase (p), and angler avidity (q). All
random effects, i.e., individual angler (r), station location
(s), and trip (t), were also included in the model. The
estimated dispersion parameter κ was 7.1. Predicted values
and variance estimates are therefore calculated as a
mixture of the model components:

EðYijklnpqrstÞ ¼ μijklnpqrst·ð1� πnÞ;
and

varðYijklnpqrstÞ ¼ ð1� πnÞ· μijklnpqrst þ
μ2ijklnpqrst

κ

 !

þ μ2ijklnpqrst·ðπ2n þ πnÞ:

FIGURE 2. Length frequency distributions of Tautogs captured throughout the 2016–2017 rod-and-reel pilot study (top panel; N = 2,090) and the
trawl survey (bottom panel; N = 263) during the same time period (from fall 2016 to fall 2017), represented as a proportion at each length category.
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Mean CPA was highest in October, followed by
September and November (Figure 3). Temperature was
marginally important in predicting presence–absence of

Tautog (P = 0.09) and also significant as a covariate in
the negative binomial regression, indicating that mean
CPA increased with increasing temperatures. The CPA
was lower when fishing occurred from the MDMF vessel
than from the charter vessel, reflecting the skill of the con-
tracted charter fisher, but is likely also an artifact of the
relatively few trips conducted from a MDMF vessel and
the catch rates associated with those trips. Fishing depth
was not retained in the model, but depth stratum was,
and mean CPA was highest in the intermediate depths fol-
lowed by the deep stratum and then the shallow stations.
Tidal phase seemed only marginally important and highly
variable, but there is some evidence that slack low and
incoming tides were associated with higher CPA than
slack high and outgoing tides. Lastly, there was a positive
relationship between mean CPA and angler avidity.

Although this survey was conducted in a relatively
small geographic area, we observed tremendous variability
in catch rates among sampling locations. Given the high
variability, the top model was able to predict catch rates
reasonably well (Figure 4). Some of this variability is illus-
trated in the random effects for station (r2 = 0.72), fishing
day (r2 = 0.29), and to a lesser degree, angler (r2 = 0.01;
Figure 5). There was very little variability among anglers
and fishing day, but there was substantially greater vari-
ability among sampling locations (Figure 5). The sampling
locations that were above and below average appeared
randomly distributed throughout the bay and did not
show signs of clustering, suggesting that Tautog abun-
dance varies across small spatial scales (Figure 6). This
observation that localized densities can vary even among
neighboring rock piles has been noted anecdotally.

The rod-and-reel survey had a reasonable level of sta-
tistical power to detect changes in the Tautog popula-
tion, with a slightly greater ability to detect a decline in

TABLE 3. Summary of the candidate models evaluated, listed in rank order, with an “x” placed under each variable that was included in the model.
Under fixed effects, covariates were abbreviated as follows: Y = year, M = month, V = vessel, T = water temperature, S = depth stratum, F = fish-
ing depth, Tp = tidal phase, Ta = tidal amplitude, Av = angler avidity. For the random effects, all three random effects (angler, location, and trip)
were included in all models. ZI represents the zero-inflated model component, with T indicating when water temperature was included as a covariate
in the logistic regression. The AIC and ΔAIC values are also reported.

Rank

Fixed effects Random effects
ZI

AIC ΔAICY M V T S F Tp Ta Av Ang Loc Trip T

1 x x x x x x x x x x x 3038.5 0
2 x x x x x x x x x x x x x 3039.7 1.2
3 x x x x x x x x x x x 3040.1 1.6
4 x x x x x x x x x x 3044.0 5.5
5 x x x x x x x x x x x 3045.1 6.6
6 x x x x x x x x x x x x 3049.7 11.2
7 x x x x x x x x x 3053.1 14.6
8 x x x x x x x x 3061.4 22.9

TABLE 4. Parameter estimates associated with the model with the low-
est AIC value. The reference level for the model intercept represents the
following as the reference level: year 2016, month of April, charter vessel,
shallow depth stratum, and high tidal phase.

Variable Factor level Estimate SE

Logistic model
Intercept −4.997 2.420
Temperature −3.525 2.073

Negative binomial model
Fixed effects
Intercept −1.147 0.875
Year 2017 −0.577 0.252
Month May 1.766 0.804

Sep 1.063 1.012
Oct 0.881 0.935
Nov 1.553 0.839
Dec −1.706 1.190

Vessel MDMF −1.598 0.534
Strata Mid 0.724 0.218

Deep 0.336 0.279
Temperature 0.917 0.259
Tidal phase High–Low −0.113 0.150

Low −0.147 0.154
Low–High 0.240 0.143

Angler avidity 0.178 0.046
Random effects
Angler (r2) 0.013
Station (r2) 0.722
Trip (r2) 0.288
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abundance than an increase (Figure 7). We estimated
about a 20–40% chance of detecting a 20% increase or
decrease in the population. These results suggest that
reducing our sampling to only 2 months during the fall
(using the 2017 data only, as we did not sample in the
spring of 2016) did not substantially influence our abil-
ity to detect meaningful trends. Because the purpose of
this study was to evaluate whether a rod-and-reel survey
could provide better information on Tautog trends than
the MDMF trawl survey, we compared our results with
the estimated power from the trawl survey. The trawl
survey had less than a 10% chance of detecting up to a
50% increase or decrease in the population in both 2016
and 2017 (Figure 7).

DISCUSSION
This pilot study illustrated that the use of rod and reel

is a capable method of effectively sampling Tautog in
complex habitats that are inaccessible to bottom trawls,
and this may offer a more powerful alternative to trawl-
based indices of abundance. Rod-and-reel surveys are rela-
tively cost effective and easy to implement from a variety
of platforms (e.g., small vessels without specialized equip-
ment). Given that Tautog are relatively sedentary with
inter- and intraannual site fidelity (Olla et al. 1979),
improved monitoring and management of Tautog in state
waters is likely to have direct benefits to local anglers.
Based on the power analyses, the ability to detect mean-
ingful changes in the abundance of Tautog would increase

FIGURE 3. Predicted angler CPA plotted against fixed effects covariates. The boxplots, shown for categorical predictor variables, show the median
predicted catch per angler with a dark black line; the upper and lower limits of the box represent the third and first quartile, and the whiskers
extending up to 1.5 times indicate the interquartile range. Data extending beyond 1.5 times the interquartile range are depicted as solid points.
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substantially by implementing a rod-and-reel survey to
generate an annual index of relative abundance.

Our results suggest that a fishery-independent rod-and-
reel survey shows promise as a viable monitoring tool;
however, it is not without challenges and limitations. Tau-
tog catch rates illustrated spatial and temporal variability.
During the spring, no Tautog were encountered until the
water temperatures approached 10°C. As the water

warmed, catch rates slowly began to increase, and fish
became distributed throughout the study region as they
migrated inshore to spawn. During the fall, catch rates
were generally higher but also more variable as fish staged
for their winter migration into deeper waters. Appropriate
standardization to address factors influencing catch rates
other than changes in abundance represents one of the pri-
mary challenges to using a rod-and-reel survey as an index
of relative abundance. Standardization attempts to adjust
for factors that influence catch rates through time other
than changes in abundance (Maunder and Punt 2004). In
this study, the variables identified in our top models as
being influential with regard to catch rates are largely fac-
tors that can be controlled through the design of a future
survey, thus minimizing post hoc standardization. Trawl
gear is an effective survey tool because trawls can be
easily standardized and readily produce density estimates.
Standardizing rod-and-reel gear can be more challenging
for a suite of reasons. In our study, we standardized fish-
ing time to 45 min; however, in some cases individual
angler effort deviated from the standard time interval for
reasons that included hang-ups on the bottom, hook loss,
fishing rig replacement, and, in one instance, reel malfunc-
tion. Effort standardization could be improved upon by
implementing individual hook timers similar to the design
used by Harms et al. (2010) and refining the effort esti-
mate to include only the time that the hook is in the water
(e.g., Haggarty and King 2006).

FIGURE 5. Caterpillar plots showing the distribution of the individual factor levels within the three random effects included in the model relative to
the mean value for that factor. The triangles represent the best linear unbiased predictor for a given level, and the vertical bars represent two SDs.
Positive values suggest that the factor level is above average, and negative values below average. The black triangles indicate factor levels for which
the estimates ±2 SD do not include zero, thus are considered significantly different from the mean effect.

FIGURE 4. Observed versus predicted catch per angler (CPA) to
illustrate model fit that approximates a 1:1 relationship (dashed line).
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Catch per angler was chosen as the preferred response
metric to capture the fine-scale variability in catch rates.
We initially predicted that variability in angler catches
would largely be attributed to angler skill; however, our

observations and modeling results suggested that, although
angler skill level explained some of the variability in
catch rates, the fine-scale habitat differences seemed even
more important (e.g., fishing directly over a rock cluster
versus adjacent to one). Angler catches at a given sam-
pling event varied considerably, suggesting that pseu-
doreplication was not an issue and that aggregating
across angler catches would artificially decrease the catch
rate variability and increase the statistical power. We
have presented a comparison of power between the rod-
and-reel and trawl surveys, but this comparison is not a
direct one due to differences in selectivities. We evaluated
whether the low power of the trawl survey was caused in
part by the inclusion of the smaller, potentially more
variable size-classes. We found that the low power of the
trawl survey to detect changes in the Tautog population
was more an artifact of low sample size than the differ-
ences in size selection.

Selectivity of both the rod and reel and trawl surveys is
assumed to be asymptotic as the hook size is consistent
with that of the recreational and commercial fisheries;
however, the length frequency data suggest that the trawl
survey has greater selectivity for the smaller fish (<20 cm;
Figure 2). Given the apparent differences in selectivity
between the two surveys, the trawl survey could be used
to provide an index of young of the year and age-1
Tautog abundance, while the rod-and-reel survey could
index fish ages 2 and older. Understanding survey gear

FIGURE 7. The power curves illustrate the probability (y-axis) of
detecting a given percent change in Tautog abundance (x-axis). This
figure depicts five power curves: two for the full pilot study sampling
effort in 2016 (black solid line) and 2017 (gray solid line), one for the
estimate from reduced sampling in the months of September and October
in 2017 (dashed gray line), and two from the synoptic MDMF trawl
survey in 2016 (black dotted line) and 2017 (gray dotted line).

FIGURE 6. Location and relative magnitude of the sampling location random effects. (A) The large light-gray circles represent large negative
random effects (i.e., below-average locations with regard to Tautog CPA), and the small black circles indicate relatively small negative random effects.
(B) The large light-gray circles represent large positive station effects (i.e., above-average locations in terms of Tautog CPA), and the small black
circles indicate small positive random effects.
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selectivity is an important consideration for stock assess-
ments when a survey is incorporated as an index of rela-
tive abundance. Directed research to further evaluate
selectivity associated with different hook sizes would be
valuable to solidify our assumption of asymptotic selectiv-
ity and define the ascending limb of the selectivity curve
(e.g., Punt et al. 1996).

Gear saturation is another important consideration
given the finite capture capacity of hook-and-line sampling
gear, because it can potentially degrade the proportional-
ity between the relative index and true abundance when
abundance is above the saturation threshold. Given our
sampling design, gear saturation would have been per-
ceived if each hook drop readily resulted in capture. In
this pilot study, hook saturation never presented as a
problem, but this could be a concern in the future if Tau-
tog abundance increases. Although density estimates are
difficult to obtain using rod and reel, CPA can be used as
an informative measure of relative abundance to monitor
trends in a population through time (Haggarty and King
2006).

In this survey we targeted the preferred Tautog habi-
tats, but given our hypotheses it is also valuable to under-
stand how catch rates in the suboptimal habitat change
through time. The MDMF trawl survey is expected to
continue into the future and therefore will be able to pro-
vide this additional information. Targeting the featureless
bottom with the rod-and-reel survey would be inefficient
and likely provide little useful data, and targeting only the
complex habitat could result in hyperstability (Hilborn
and Walters 1992), the situation where the index could
remain stable as the true population declined. For these
reasons, we suggest that tracking Tautog population
dynamics through time could be best achieved by using
the combined information from both the trawl and
rod-and-reel surveys, as these data sources are viewed as
complementary rather than mutually exclusive.

The top model indicated that depth stratum was an
important variable, but not fishing depth. We acknowl-
edge the possible confounding of these variables; how-
ever, we were interested in evaluating a model that
retained both variables as well as models that included
only one or the other. Due to the flexibility of fishing
within the 1′ square associated with each sampling loca-
tion, there was an occasional disconnect between fishing
depth and the depth stratum that a given sampling loca-
tion was assigned to. Even so, depth stratification was
important in the models; this was likely due in part to
the geographical location of the sampling events and
not solely the influence of depth. The deep sampling
locations were largely clustered in the southwestern
region of our survey extent, while the shallow strata
were clustered closer to shore. In the power analysis,
CPA was stratified by depth and month, but we also

evaluated power with the omission of depth stratifica-
tion. We found that depth stratum reduced our statisti-
cal power at times, suggesting that the stratification
scheme could be refined to better reflect variability in
the monitored population. We are exploring the use of
a simulation to further refine the stratification and ran-
dom selection of sampling locations, should this survey
be adopted as a long-term monitoring tool.

In the Massachusetts–Rhode Island region, recreational
fishing accounts for upwards of 90% of the Tautog land-
ings. With the expanding human population and advances
in fishing technologies, it is expected that recreational
angling has the capacity to deplete exploited stocks in a
manner similar to commercial fishing (Post et al. 2002;
Arlinghaus 2006). In particular, species that form pre-
dictable aggregations, both geographically and temporally,
are exceptionally vulnerable to overexploitation (e.g.,
Sadovy and Domeier 2005; Cheung et al. 2007; Sadovy
de Mitcheson et al. 2013; Gr€uss et al. 2014). Tautog,
being a reef fish, exhibits aggregating behavior in struc-
tured habitats throughout coastal waters, particularly
during the fall months before winter migration. This
aggregating behavior, although not linked to spawning
events, does result in predictable high-density aggregations
at specific times of the year. As such, there is concern
regarding their vulnerability to overexploitation; therefore,
the ability to monitor trends in abundance is paramount
for conservation. Our results demonstrate that the
MDMF trawl survey has very low power to detect even
substantial changes in Tautog abundance and therefore
has limited ability to monitor fine-scale population fluctu-
ations that are relevant for timely management. In addi-
tion, the rod-and-reel survey could be used to identify
persistent high-density aggregations, which in turn could
help determine spatial management approaches (e.g.,
directed fine-scale closures if stock abundance declines or
stock status changes).

We have framed this study largely around habitats
defined either as optimal or suboptimal based on previous
research (Olla et al. 1974, 1975, 1979), yet there remains
much to learn about fine-scale habitat use. Ontogenetic
shifts in home range have been described, where adults
make larger foraging excursions than do juveniles (Olla
et al. 1974), and although there appears to be a strong
adherence to a homesite, Tautogs will leave those sites in
search of more amenable habitat if conditions become
suboptimal (Olla et al. 1979). Density is likely a contribut-
ing factor in the decline of homesite suitability (e.g. basin
model: MacCall 1990), as food and space can become lim-
iting. Further research investigating habitat characteristics
amenable to Tautogs would be warranted to better under-
stand how they are using different habitat types, to refine
the survey stratification, and to also identify important
habitat needs for conservation measures.
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In summary, the use of a fishery-independent, rod-and-
reel survey shows promise as an effective monitoring tool,
complementary to the inshore trawl survey, to monitor
trends in Tautog abundance in the coastal waters of Mas-
sachusetts. The development of a survey to explicitly sam-
ple the preferred, complex habitats is warranted given
uncertainties in the current assessment and limitations of
the fishery-independent survey data in Massachusetts
waters. Due to the relative sedentary behavior and site
fidelity of Tautogs, investments in improved monitoring
and management of the MARI stock component is antici-
pated to have direct benefits to the anglers in this region.
The methods and models we have proposed could be used
in the development of a standardized index for use in
future stock assessment. Until we gain a better under-
standing of habitat use and the influence that it has on
survey catch rates, it would be prudent to use multiple
and complementary survey gears to characterize this
Tautog population and ensure management actions are
appropriate.
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